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Summary 

Under polar conditions asymmetric hexaalkylditins, R3 SnSnR; , clispro- 
portionate rapidly at room temperature to give the symmetrical &ins R,Sn* and 
RkSnz . The equilibrium constants observed for a series of such reactions (R = 
Me; R’ = Et, Pr, Bu, i-Bu) point to a predominance of steric rather than induct- 
ive effects. 

Hexaalkyl-ditins (and -digermanes) also react readily under polar conditions 
with carbon-carbon triple bond systems as well as with diethyl azodicarboxylate. 

Introduction 

When heated, hexaorgano-ditins and digermanes do not dissociate into free 
radicals. For example, l,l,l-trimethyl-2,2,24riethylditin can be distilled at 235” 
without dkproportionation. Furthermore, a l/l mixture of hexamethylditin and 
hexaethylditin remains unaltered when heated for 25 h at temperatures up to 
150” [a]. 

It-has been observed recently that with organodigermanes (M, M’ = Ge; 
R = Et) reaction 1 proceeds instantaneously at room temperature in HMPT (hexa- 

Me6M2 f R,M> 2 2Me3 MM’R3 

(M,-M’ = Ge, Sn;? = Et} 

(1) 

methylphosphoric triamide) solution in the presence of a catalytic amount of 
base [ 3] . Studies of the reactions of orgauoditins under polar conditions are dis- . 
cussed below. 

- A preliminary paper has already appeared Cl] - 
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TABLE 1 

REACTION BETWEEN EQUIMOLAR AMOUNTS OF Me&l2 AND Et&h2 AT ROOM TEMPERATURE 
Concentration of reactants 0.5 mmol/ml 

Solvent Catalyst Time MesSnSnEt3 o 
(5 mole %) @) <%) 

TI-IF 0 
THF AIBN b z 0 

THF h%eMgBr O-5 52 
MeCN 72 0 
MeCN MeONa 48 51 
HMPT 0.1 -40 
HMPT MeMgBr 0.3 51 

a Determined by quantitative GLC analysis_ b 2.2’-Azobii(iiobutyronitriIe); reaction temperature 60° - 

Results and discussion 

Disproportionation reactions 
In Table 1 the results of reactions of the type shown in equation 1 (M, 

M’=Sn;R=Et) are collected. In THF or acetonitrile solutions at room temper- 
ature reaction takes place only in the presence of a catalytic amount of base 
(e.g., MeMgBr, MeONa), whereas in the skongly basic solvent HMPT reaction 
proceeds even without a catalyst. 

The equilibrium constant RI was found to be effectively the same in THF, 
MeCN and HMPT, viz. K(THF) = 0.23 * 0.02; K(MeCN) = 0.24 f 0.02; 
R(HMPT) = 0.25 + 0.02; this value of K, implies an almost random distribution 
of the trimethyltin and txiethyltin groups (K, = 0.25). In contrast, the equilib- 
rium constant RI for the base-catalysed disproportionation between hexa- 
methyldigerman& and hexaethyldigermane in HMPT was found to be 0.12 [ 3 J . 

The equilibrium constants determined for reaction 1 with M = Sn and 
R = Et, Pr, Bu, i-Bu (Table 2) indicate that the more different the steric bulk 
of the two trialkyltin groups the more the distribution deviates from random- 
ness, with preference for the mixed ditin species. Thus, steric rather than in- 
ductive effects seem to be of dominant importance. 

As demonstrated by the synthesis of some new compounds of the type 
Me3SnSnR3 (Table 3), reaction 1 offers an attractive preparative route to mixed- 
substituted ditins. Preliminary experiments showed that this reaction also oc- 
curs (in HMPT solution) with M = Si, Ge and M’ = Ge, Sn (R = Me) to give the 
corresponding mixed Group IV metal-metal bonded compounds. With the sys- 

TABLE 2 

EQUILIBRIUM CONSTANTS FOR REACTION 1 (M = So) IN THF AT ROOM TEMPERATURE 
Catalystr 5-10 mok percent MeMgBr 

R Kr 0*a 

Et 0.22 + 0.02 -0.lCO 
pr O-13 f0.02 -0.115 
Bu 0.18 f 0.02 -0.130 
i_BU 0.020 * 0.005 -0.125 

o a*: polar substituent constant [43. 5 E,r steric substituent constant [4] _ 

-0.01 
-0.36 
-0.39 
-0.93 
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J&M Ph 

R,MMR, + PhC=CPh + 
/ 

‘C=C 
/ 1 

Ph MR, 

(M = Sn; R = Me, Et; M = Ge; R = Me) 

(3) 

elusively a,&‘-dibromo-frans-stilbene (isolated), and by cleavage with sodium 
methoxide in a HMPT/methanol mixture, which gave exclusively trans-stilbene 
(GLC). Addition could only be accomplished in HMPT and in the presence of a 
catalytic amount of base. Attempts to perform reaction 3 (M = Sn; R = Me) in 
THF, methanol or acetonitrile solution in the presence of sodium methoxide 
at 50” failed. 

Although slightly less reactive than hexamethylditin, hexaethylditin and 
hexaethyldigermane similarly gave the adducts I (M = Sn, R = Et and M = Ge, 
R = Me). The trans-adduct was also obtained with phenylacetylene, whereas 
with I-hexyne only a very small amount of reaction occurred. 

Mes Sn’ 
\ /R 

Me3 SnSnMej + HCkCR + c=c’ 
1 \ 

(4) 

I-Q Sn* Me, 

(R = Bu, Ph) (II) 

Diphenylbutadiyne reacted w%th hexrunethylditin in either l/l or l/2 ratio 
to give l,~diphenyl-1,2,3,4-tetrakis(trimethylstannyl)-l,3-b~tadiene (III). 

?h-C(Sn2Me3)=C(Sn’Me, )-C(SnMe3)=C(SnMeJ)Ph 

(III) 

Reactions of hexamethylditin with both pm-a- and ortho-diethynylbenzene 
gave rather complex product mixtures. By repeated distillation and/or preparative 
GLC prod-acts IV-VI and product VII, respectively, were isolated (cf. Table 3). 
Compound V was presumably formed by partial hydrolysis of adduct IV during 
the work-up. Further studies are required in order to decide whether compounds 
VI and VII are formed in a similar way from the cis-bis(tin) adduct. 
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Sn2Me3 
/ 

Conclusive evidence for structures I-VII is given by their PMR spectra 
(Table 4). Both the chemical shifts and the coupling constants of the olefinic 
protons are completely in line with previous results [ 71. 

With diethyl acetylenedicarboxylate and with cyanoethyne side-reactions 
occurred leading to a complete degradation of the acetylenic compounds and 
consumption of only a few percent of the ditin (GLC). With ethoxyethyne no 
reaction was observed_ 

Attempts to perform addition of hexaalkyldit.ins to carbon-carbon double 
bonds (styrene, trans-stilbene, 2,3dimethylbutadiene), carbon-oxygen double 
bonds (benzaldehyde, acetophenone, benzophenone) and carbon-nitrogen 
double bonds (benzalaniline) failed. Reaction of hexamethylditin with phenyl 
isocyanate resulted only in trimerisation of the latter compound_ 

With nitrogen-nitrogen double bond systems, no reaction was observed 
between hexamethylditin and azobenzene, but reaction of this ditin with diethyl 
azodicarboxylate in HMPT proceeded smoothly, even without a catalyst, to give 
l,Zbis(trimethylstannyl)diethyl-l,2-hydrazinedicarboxylate (eqn. 5). 

Me6Snz + EtOOC-N=N-COOEt + MeSSn-N(COOEt)-N(COOEt)SnMes (5) 
(VIII) 

An illustrative example of both the disproportionation reaction and the 
addition reaction of ditins under polar conditions involves the reaction of 
l,l,l-trimethyl-2,2,2triethylditin with diphenylacetylene, which gave a mixture 
of all three expected adducts (GLC, PMR). In such a reaction that had not been 
allowed to go to completion, all three ditins were observed by GLC in a ratio cor- 
responding with an equilibrium constant of 0.23 (eqn- 6). This implies that the 
rate of ditin addition is equal to or lower than the rate of equilibrtition. 

2Me, SnSnEt3 =+ + 

I 

Me, SnSnMe3 Et,SnSnEt, 

I I 
PhC=CPh PhC=CPh PhC=CPh 

1 I 
MesSn Ph Me,Sn ” Ph 

\ / \ / 
Ets Sn 1 Ph (61 

I 
c=c c=c 

\ / 
c=c 

/ \ / \ 
Ph SnEt, Ph SnMe, ’ \SnEt Ph 3 
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Mechanistic considerations 
Both the disproportionation of ditins and the addition of ditins to unsatur- 

ated systems proceed exclusively under strongly polar conditions. The reaction 
rates are markedly enhanced by catalytic amounts of base (MeMgBr, MeONa). 
Similar to the anlogous reaction of digermanes [ 31 the disproportionation reac- 
tion of ditins may be explained by a nucleophilic attack of a trialkyltin moiety 
on the tin-tin bond (eqns. 8-10). The presence of a few percent of tetramethyl- 
tin (GLC, PMR) in the reaction mixtures (MeMgBr catalysis) is in accord with 
this picture (eqn. 7). A simiiar cleavage of hexaphenylditin by ethylmagnesium 
bromide has been reported by Creemers [S]. 

MeMgBr + Me, SnSnMe3 + Me,Sn + Me,SnMgBr (7) 

Mes SnMgBr + R3 SnSnR, =+ Me,SnSnR, + R3 SnMgBr 
R3 SnMgBr + Mes SnSnMes =+ Me3SnSnR, + Me,SnMgBr 

(3) 
(9) 

Me,SnSnMe3 + R3SnSnR3 * 2Me3SnSnR3 (10) 

In the strongly basic solvent HMPT reaction 10 proceeds even without a 
catalyst. Conductivity measurements showed no appreciable dissociation of di- 
tins in this solvent, e.g. molar conductance A, (Me6Sna ) = 0.01 ohm-‘cm2 
mol-’ (0.01 mole I-’ in HMPT). Therefore, in HMPT an S,2 (cyclic) mecha- 
nism seems more plausible, as compared with an S,2 (open) mechanism in 
THF solution and in the presence of base &atalysts. 

The addition of tin-tin bonds to &bon-carbon triple bonds likewise re- 
quires strongly polar conditions (HMPT) and a base catalyst. The reaction rate 
decreases in the order PhCZCPh > PheCH > BuC+CH 9 EtOC-CH (unreac- 
tive). These features point to a nucleophihc attack of a trialkyltin group on 
carbon [9] (eqns. 11-13). 

MeMgBr + Me3SnSnMe, --f Me,Sn + Me3SnMgBr 

Me, Sn 

Me&&IgBr + R-C-R -+ 
\ lR’ 

c=c 
/ \ 

R MgBr 

(11) 

(12) 

Me, Sn 
\ iR’ 

Me, Sn R’ 

c=c 

R’ \ 

+ MesSnSnMe, + >=C< + Me3SnMgBr (13) 

MgBr R SnMe3 

Experimental 

oh reactions were performed in rigorously dried glass apparatus in an atmo- 
sphere of dry, oxygen-free nitrogen. Liquids were handled by the syringe tech- 
nique. Unless otherwise indicated the starting materials-were prepared according 
to published procedures or purchased. All materials were distilled-in a nitrogen 
atmosphere before use. 



392 

Recording of the PMR spectra, GLC analyses, molecular weight determina- 
tions and element analyses were carried out within the Department of Physical- 
Organic and Analytical Chemistry under the supervision of Dr. A. Mackor, at the 
Institute for Organic Chemistry TNO, Utrecht, The Netherlands. 

Reaction of Me&nz with Et&zz in THF in the presence of 5 mole percent of 
MeMgBr 

A standard solution was prepared of 0.42 ml (0.65 g; 2.0 mmol) of Me,%, , 
0.60 ml (0.82 g; 2.0 mmol) of E&Sn *, 0.175 g of toluene (internal standard) 
and 2.80 ml of THF. GLC analysis confirmed the presence of 0.51 mmol of 
Me,Sn, and 0.53 mmol of Et,%, per ml of standard solution. To 1 ml of this 
standard solution was added in one portion 17.0 ~1 of a 1.5 N solution of 
MeMgBr in THF. GLC analysis of a sample taken after 0.5 h at room tempera- 
ture demonstrated the presence of 0.248 mmol of Me,%, ,0.262 mmol of EtsSnj 
and 0.536 mmol of Me&nSnEt, . Within experimental error (2-5%) identical 
results were obtained after 3 h at room temperature. The figures given in Tables 
1 and 2 were obtained in a similar way, each figure being the average value of 
three measurements. 

Synthesis of Me$nSnR, (R = Et, Pr, Bu, i-Bu) 
A solution of Me6Sn, (2.46 g; 7.5 mmol) and Et6Sn2 (3.09 g; 7.5 mmol) 

in 15 ml of THF was treated with 255 ~1 of a 1.5 Nsolution of MeMgBr in di- 
ethyl ether. After standing overnight 5 ml of a saturated aqueous solution of 
NH4Cl were added, the organic layer was separated and the aqueous phase 
was extracted twice with diethyl ether. Fractionation gave 1.6 g (58%) of 
Me,SnSnEt, (GLC one single peak). 

In a similar way Me,SnSnPr, , Me,SnSnBu3 and Me,SnSn-i-Bu, were pre- 
pared. 

To a solution of 1.78 g (10 mmol) of diphenylacetylene, 3.28 g (10 mmol) 
of MeeSn, and 214.4 mg of toluene (internal standard) were added 120 ~1 of a 
sodium methoxide solution, prepared by dissolving 0.5 g of sodium in 5 ml of 
methanol (5 mole percent of catalyst). GLC analysis after 3 h at 50” and sub- 
sequently 60 h at room temperature showed that 63% of the MesSnl had been 
converted. After addition of another 5 mole percent of catalyst and additional 
heating for 3 h at 50”, 72% of Me,%, had been converted. The white crystalline 
solid formed was separated by filtration, washed with pentane and dried, to give 
1.7 g (47%, based on the amount of Me,&, converted) of trans-l,Zbis(tri- 
methylstannyl)-1,2diphenylethylene; m-p. 130-131”. (Found: C, 47.4; II, 5.6; 
Sn, 47.1. C2,,H2sSn, calcd.: C, 47.49; H, 5.58; Sn, 46.93%) 

In a similar way were prepared: trans-1,2-bis(triethylstannyl)-1,2-diphenyl- 
ethylene (82% yield) (found: C, 53.1; H, 6.6; Sn, 40.8. C26H40Snz calcd.: 
C, 52.93; H, 6.82; Sn, 40.23%); trans-1,2-bis(trimethylgermyl)-1,2_diphenyl- 
ethylene (25% yield) (found: C, 58.3; H, 6.8; mol. wt. 410. CioHzsGell c&d.: 
C, 58.08; H, 6.82%; mol. wt. 413.6); trans-1,2-his(trimethylstannyl)phenyl- 
ethylene (25% yield) (found: C, 39.9; H, 5.7; Sn, 53.3. C14H24Sn2 calcd.: 
C, 39.13; H, 5.63; Sn, 55.24%); 1;4-jdiphenyl-1,2,3,4-tetrakis(t+methylstannyl)- 
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1,3-butadiene (11% yield) (found: C, 39.3; H, 5.3; mol. wt. 865. Cl&I&n4 c&d.: 
C, 39.22; H, 5.41%; mol. wt. 858). 

I.2-Bis(trimethylstannyl)diethyl-l,2-hydrazinedicarboxylate 
A mixture of 0.82 g (2.5 mmol) of Me,Sn,, 0.44 g (2.5 mmol) of diethyl- 

azodicarboxylate, 0.9 ml of THF and 0.1 ml of HMPT was heated for 20 h at 80”. 
According to GLC analysis 83% of Me,!& was consumed. The solvents and resi- 
dual starting materials were evaporated in high vacua to give a white solid, which 
after washing with pentane and drying in vacua analyzed corr&ly for the title 
compound VIII; m-p. 85-O” (yield 0.88 g, 80%). (Found: C, 28-6; H, 5.6_ 
C12H2804N2Snz calcd-: C, 28.73; H, 5.63%) 

Reaction of Me&z, with para-diethynylbenzene 
A mixture of Me6Sn, (2.46 g, 7.5 mmol) and p&a-diethynylbenzene 

(0.935 g, -7.5 mmol) in 4.5 ml of HMPT was heated for 24 h at 70” in the presence 
of a shred of metallic lithium (about 10 mole percent). According to GLC ana- 
lysis 93% of Me,&* was consumed. The reaction mixture was diluted with 10 ml 
of diethyl ether/benzene (l/l) and treated with 5 ml of water. Evaporation of 
the organic layer gave 3.2 g of crude product. Fractionation yielded 0.4 g of a 
liquid, b-p. 132-135”/0.5 mmHg, which solidified on standing (m-p. Iii-115”). 
On the basis of the PMR characteristics and the analysis data structure VI was 
assigned to this product. (Found: C, 41.3; H, 5.0. &H&nZ &cd.: C, 42.35; 
H, 5.33%) 

Another fraction (0.60 g), boiling at 102-116” /0.5 mmHg consisted (GLC) 
of roughly equal amounts of Me,& and two unknown products. The PMR da’ia 
of the latter compounds, isolated by preparative GLC, are consistent with struc- 
tures IV and V. 

In a similar way coplpound VII was obtained from the reaction of Me,Sn, 
with ortho-diethynylbenzene. 
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